# On reduction of $\alpha, \beta$-unstaurated ketones and the respective allylic alcohols, bearing a phenylsulfonyl or phenylsulfanyl group in the $\alpha$ position. Hydroxy group-controlled stereoselective reduction of $3 \alpha$ - and $3 \beta$-hydroxy-4-(phenylsulfonyl)cholest-4-ene 

Karol Michalak, Wiaczesław Stepanenko and Jerzy Wicha*<br>Institute of Organic Chemistry, Polish Academy of Sciences, POB 58, 01-224 Warsaw, Poland

Received (in Cambridge, UK) 21st January 2000, Accepted 17th March 2000
Published on the Web 19th April 2000

Reduction reactions of cholest-4-en-3-one derivatives bearing the phenylsulfonyl or phenylsulfanyl group at C-4 with various metal hydrides are studied. Lithium aluminohydride reduction of 4-(phenylsulfonyl)cholest-4-en-3 $\beta$-ol 13a and 4-(phenylsulfonyl)cholest-4-en-3 $\alpha$-ol 15a occurs with saturation of the double bond and deoxygenation to give $4 \beta$-phenylsulfonyl- $5 \beta$-cholestane $\mathbf{8}$ and $4 \alpha$-phenylsulfonyl- $5 \alpha$-cholestane 7 a, respectively. Reduction of 4-(phenylsulfonyl)cholest-4-en-3-one $\mathbf{2}$ with lithium aluminohydride yields compound $\mathbf{8}$. Reduction of compounds $\mathbf{2}$, 13a and $\mathbf{1 5 a}$ with other metal hydrides affords mixtures of diastereomeric products. Metal hydride reductions of 4-(phenylsulfanyl)cholest-4-en-3-one $\mathbf{1}$ affect the carbonyl group only. Catalytic hydrogenation of compound $\mathbf{2}$ gives a mixture of $5 \alpha$ - and $5 \beta$ - dihydro derivatives. Mechanistic and stereochemical aspects of the reduction reactions are discussed.

## Introduction

Metal hydride reduction reactions of $\alpha, \beta$-unsaturated ketones, ${ }^{1,2}$ $\alpha$-phenylsulfonyl ketones ${ }^{3}$ and vinyl sulfones ${ }^{46}$ have been extensively studied. However, there are no reports on the reduction of $\alpha, \beta$-unsaturated ketones bearing in the $\alpha$-position a phenylsulfonyl or a phenylsulfanyl group. In such derivatives relative rates of reduction of the carbonyl group and the double bond may differ from those in the parent compound, and, consequently, the steric outcome of the reaction may be different. Some consecutive reactions due to the presence of the sulfurcontaining group may also occur. Recently, we have shown ${ }^{7,8}$ that the complex hydrindane derivative $\mathbf{i}$ with oxo and vinyl sulfone functions, in reaction with lithium aluminohydride was transformed stereoselectively into product iii with trans-fused hydrindane rings. We have also noted that the steric course of the carbon-carbon double-bond reduction doesn't depend upon the orientation of the hydroxy group ( $\alpha$ or $\beta$ ) in the intermediate ii. It was thought of interest to examine in some detail the reduction of easily available $\alpha, \beta$-unsaturated ketones $\mathbf{1}$ and $\mathbf{2}$, and the corresponding 3 -hydroxy derivatives that are likely immediate products of the carbonyl compounds' reduction. It

$R=$ oxygen substituent or modified steroid side chain

was expected that we would gain insight into the multistep reduction mechanism and, eventually, develop stereoselective approaches to trans- and cis-decalin derivatives.

## Results and discussion

Sulfide 1 was prepared by treatment of $4 \beta, 5$-epoxy- $5 \beta$ -cholestan-4-one ${ }^{9}$ with thiophenol and potassium hydroxide in ethanol. ${ }^{10}$ Sulfone $\mathbf{2}$ was obtained by oxidation of sulfide $\mathbf{1}$ with MCPBA. In order to prepare some reference compounds, the known ${ }^{11,12} 3 \alpha, 4 \alpha$-epoxy- $5 \alpha$-cholestane 3 (Scheme 1) was


Scheme 1 Reagents and yields: (a) $\mathrm{PhSH}, \mathrm{EtOH}, 83 \%$ yield; (b) MsCl , $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (c) MCPBA, $100 \%$; (d) DBU, PhH, $95 \%$ in 2 steps; (e) $\mathrm{Et}_{3} \mathrm{BLiH}, 99 \%$; (f) tert-BuOK-tert-BuOH, 100\%.
allowed to react with sodium thiophenolate in ethanol to give diaxial hydroxy sulfide 4 , by analogy to the procedure developed for related hydrindane derivatives. ${ }^{13}$ Compound 4 was treated consecutively with mesyl chloride, MCPBA, and DBU to afford vinylic sulfone 6 . Reduction of $\mathbf{6}$ with $\mathrm{Et}_{3} \mathrm{BHLi}$ and chromatographic separation of the products afforded
$4 \alpha$ - and $4 \beta$-phenylsulfonyl derivatives $7 \mathbf{a}$ and $7 \mathbf{b}$ in 79 and $20 \%$ yield, respectively. Alternatively, oxidation of hydroxy sulfide 4 with MCPBA provided sulfone 5 , which on treatement with mesyl chloride and then with $\mathrm{Et}_{3} \mathrm{BHLi}$ gave a mixture of $7 \mathbf{a}$ and $\mathbf{7 b}$. Compound $\mathbf{7 b}$ with an axially oriented phenylsulfonyl group was transformed into its epimer 7a quantitatively with potassium tert-butoxide in tert-butyl alcohol. ${ }^{14}$

Reduction of sulfone $\mathbf{2}$ with an excess of $\mathrm{LiAlH}_{4}$ in THF at room temperature afforded saturated sulfone $\mathbf{8}$ with cis configuration at the ring junction, isolated in $78 \%$ yield. The structure of compound $\mathbf{8}$ was confirmed by its reduction with sodium amalgam, which afforded $5 \beta$-cholestane.
Reduction of compound $\mathbf{2}$ with $\mathrm{NaBH}_{4}$ in methanol afforded a mixture of hydroxy sulfones $9(5 \alpha-\mathrm{H})$ and $10(5 \beta-\mathrm{H})(83 \%$ yield). The mixture could not be separated by either chromatography or crystallization; however, a sample of pure compound 9 was isolated by precipitation. Oxidation of the crude mixture of $\mathbf{9}$ and $\mathbf{1 0}$ with Jones reagent followed by chromatography afforded oxo sulfones 11 and 12 in $58 \%$ and $41 \%$ yield, respectively. Configuration at C-5 in compounds 11 and 12 was established by their reduction to $5 \alpha$ - and $5 \beta$-cholestan-3one, respectively.


The configuration around C-3 and C-4 in compound 9 follows from the results of nuclear Overhauser effects (NOE) experiments involving C-19, C-4 and C-3 protons (see Experimental section). Configuration around $\mathrm{C}-3$ and $\mathrm{C}-4$ in $\mathbf{1 0}$ was deduced from the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of 9 and $\mathbf{1 0}$ in which the signals of the $\mathrm{C}-3$ proton ( $\delta 3.91$, broad singlet) and the C-4 proton ( $\delta 3.15$, doublet of doublets, $J=12.1$ and 2.0 Hz ) in $\mathbf{1 0}$ could be seen. It was assumed that the value $J=2$ Hz corresponds to C-3-C-4 proton coupling (cis) and that the value $J=12.1 \mathrm{~Hz}$ reflects coupling of C-4 and C-5 protons in a trans configuration $(4 \alpha, 5 \beta)$. The assignment of structures of 9 and $\mathbf{1 0}$ was corroborated by the ${ }^{1} \mathrm{H}$ NMR spectrum of previously prepared hydroxy sulfone epimer 5 which differs from that of $\mathbf{9}$ in the orientation of the phenylsulfonyl group. It is noteworthy that in both alcohols $\mathbf{9}$ and $\mathbf{1 0}$ the hydroxy group occupies an axial position whereas the sulfonyl group is in an equatorial position.

Next, reduction of $\mathbf{2}$ with $\mathrm{NaBH}_{4}$ in THF in the presence of DMPU as a polar co-solvent was examined. Treatment of $\mathbf{2}$ with $\mathrm{NaBH}_{4}$ in THF-DMPU (a suspension) at room temperature afforded a mixture of hydroxy sulfones $\mathbf{9}$ and $\mathbf{1 0}$ in $74 \%$ yield in a ratio of $\approx 5.5: 1$, and oxo sulfone $\mathbf{1 2}$ in $23 \%$ yield. Oxo sulfone $\mathbf{1 2}$ resisted further reduction under the reaction conditions. It is noteworthy that isomeric oxo sulfone $\mathbf{1 1}$ was
smoothly reduced under analogous conditions to give alcohol 9. This experiment shows that the reduction reaction occurs along two mechanistic paths: (1) with reduction of the carbonyl group preceding the reduction of the carbon-carbon double bond and (2) with reduction of the carbon-carbon double bond occurring first, followed by reduction of the carbonyl group (or providing a saturated ketone 12). In practical terms, selectivity with regard to the ring-junction configuration was poor, providing, in total, $5 \alpha$ and $5 \beta$ isomers in the ratio 65:35.

Reduction of 2 with a system, $\mathrm{CuCN}-n$-BuLi-DIBAH, that is known to reduce steroidal and related 4-en-3-ones selectively to the corresponding $5 \alpha-\mathrm{H}$ saturated ketones, ${ }^{15,16}$ afforded a mixtute of ketones $11(39 \%)$ and 12 ( $22 \%$ ) and unsaturated alcohol 13a ( $10 \%$ ). Reduction of $\mathbf{2}$ with DIBAH in methylene dichloride affected the carbonyl group only and yielded quantitatively alcohol 13a.

Allylic alcohol 13a was thought to be a likely intermediate in reduction of phenylsulfonyl enone $\mathbf{2}$ to sulfone $\mathbf{8}$ by means of LiAlH. Since a directive effect of the hydroxy group appeared to be possible it was of interest to compare the steric courses of reduction of epimeric alcohols 13a and 15a. Accordingly, alcohol 13a was subjected to the Mitsunobu inversion which afforded $3 \alpha$-hydroxy sulfone 15 a in $64 \%$ overall yield, via benzoate 15b. In parallel experiments $\mathbf{1 5 a}$ was prepared from $3 \beta$-hydroxy sulfide 14 (see below) via 16b and 16a in a somewhat better overall yield ( $68 \%$ ).

Reduction of $3 \beta$-hydroxy sulfone 13a with $\mathrm{LiAlH}_{4}$ afforded $5 \beta-\mathrm{H}$ sulfone $\mathbf{8}$ in $78 \%$ yield. Reduction of $3 \alpha$-hydroxy sulfone 15a with $\mathrm{LiAlH}_{4}$ afforded $5 \alpha-\mathrm{H}$ sulfone 7 a in $82 \%$ yield.
In light of the clear directing effect exerted by the hydroxy group in the reduction of hydroxy sulfone 13a, it was of interest to examine the effect of an alkoxy group. To this end, the methoxymethyl derivative 13b, prepared from 13a in the usual way, was treated with $\mathrm{LiAlH}_{4}$. Three products, $\mathbf{8 , 7 a}$ and $\mathbf{7 b}$, were obtained; a ratio of $5 \alpha-$ to $5 \beta-\mathrm{H}$ products was estimated as $\approx 1: 1$. The above results for the reduction reactions of vinylic sulfones 2, 13a and 15a are compiled in Table 1.

Reduction of sulfide $\mathbf{1}$ with various reducing agents afforded mixtures of 3-hydroxy-4-(phenylsulfanyl)cholest-4-enes 14 and 16a. Some results are shown in Table 2. No carbon-carbon double-bond reduction was observed. Only Luche reduction ${ }^{17}$ $\left(\mathrm{NaBH}_{4}-\mathrm{CeCl}_{3}\right)$ was virtually selective with respect to $3 \beta$ hydroxy derivative 14.

Catalytic hydrogenation of sulfone $\mathbf{2}$ in the presence of $10 \%$ palladium on carbon was examined for completeness of our study. Compound 2 was practically unchanged under hydrogenation conditions in EtOH at room temperature. However, at reflux temperature the reaction was complete in $c a .5 \mathrm{~h}$ to yield trans and cis products, $\mathbf{1 1}$ and $\mathbf{1 2}$ in the ratio 6.5:1. Hydrogenation of 2 in EtOH at room temperature in the presence of $\mathrm{CF}_{3} \mathrm{COOH}$ afforded $\mathbf{1 1}$ and $\mathbf{1 2}$ in the ratio 5.5:1. Our attempts to achieve stereoselective reduction of the carbon-carbon double bond in $\mathbf{2}$ by varying the solvent in the catalytic hydrogenation reaction failed.

The above described experiments allow for some mechanistic comments. It is likely that reduction of 2 to $5 \beta-\mathrm{H}$ saturated sulfone $\mathbf{8}$ commences with hydride ion addition to the carbonyl group from the $\alpha$-side to form intermediate iv, Scheme 2. Further reduction occurs with intramolecular hydride ion delivery and elimination of the metal-bonded oxygen atom. The intermediate vinylic sulfone $\mathbf{v}$ with cis ring junction undergoes further reduction to 8 . This mechanism is corroborated by stereoselective reduction of the allylic alcohol with $\beta$-oriented hydroxy group, 13a (Table 1, entry 2). Intramolecular hydride anion delivery presumably occurs in a similar fashion in reduction of $3 \alpha$-hydroxy derivative 15a (via intermediate vi) to yield $5 \alpha-\mathrm{H}$ sulfone 7 a (Table 1 , entry 3 ). The importance of the hydroxy group for stereoselective introduction of the hydrogen at C-5 is also shown by the reduction of the MOM ether 13b in which a mixture of $5 \alpha-$ and $5 \beta-\mathrm{H}$ products was formed

Table 1 Reduction of oxo sulfone 2 and hydroxy sulfones $\mathbf{1 3 a}$ and $\mathbf{1 5 a}$ with metal hydrides

| Entry | Compound | Reducing system | Product (yield \%), ratio | $5 \alpha: 5 \beta$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | $\mathrm{LiAlH}_{4}-\mathrm{THF}$ | 8 (78) | $5 \beta-\mathrm{H}$ only |
| 2 | 13a | $\mathrm{LiAlH}_{4}$-THF | 8 (78) | $5 \beta-\mathrm{H}$ only |
| 3 | 15a | $\mathrm{LiAlH}_{4}$-THF | 7 a (82) | $5 \alpha-\mathrm{H}$ only |
| 4 | 13b | $\mathrm{LiAlH}_{4}$-THF | 8, 7a, 7b | 1:1 |
| 5 | 2 | $\mathrm{NaBH}_{4}-\mathrm{MeOH}$ | 9, 10 (83) | 3:2 |
| 6 | 2 | $\mathrm{NaBH}_{4}-\mathrm{THF}-$ DMPU | 9, 10 (74) and 12 (23) | 2:1 |
| 7 | 2 | $\mathrm{CuCN}-n-\mathrm{BuLi}-\mathrm{DIBAH}$ | 11 (39), 12 (22), 13a (10) | 2:1 |
| 8 | 2 | DIBAH- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | 13a (100) |  |

Table 2 Reduction of oxo sulfide $\mathbf{1}$ with metal hydrides

| Entry | Reducing agent | Solvent | Temp. | Product (yield \%, ratio) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | DIBAH | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane | $-78^{\circ} \mathrm{C}$ | 14 (69) and 16a (21) |
| 2 | L-Selectride | THF | $-78^{\circ} \mathrm{C}$ | 14 and 16a (79, 82:18) ${ }^{\text {a }}$ |
| 3 | $\mathrm{NaBH}_{4}-\mathrm{CeCl}_{3}$ | THF-MeOH | $-78^{\circ} \mathrm{C}$ to rt | 14 (91) ${ }^{\text {b }}$ |
| 4 | $\mathrm{LiAlH}_{4}$ | THF | rt | 14 and 16a (91, $84: 16$ ) |

${ }^{a}$ Ratio of products was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{b}$ Some $\mathbf{1 5 a}$, less than $5 \%$, could be detected by ${ }^{1} \mathrm{H}$ NMR analysis.

(Table 1, entry 4). The hydroxy group-directing effect has not been observed in the reduction of a related hydrindane system. ${ }^{7}$ This difference suggests that in the hydrindane system reduction of the vinyl sulfone unit occurs by intermolecular hydride anion delivery. It is noteworthy that $\mathrm{LiAlH}_{4}$ reduction of the carboncarbon double bond at the ring junction in a hydrindane-related vinylic sulfone lacking an oxygen function afforded the trans-hydrindane derivative only. ${ }^{6} \mathrm{NaBH}_{4}$-methanol reduction of 2 affording a mixture of $\mathbf{9}$ and $\mathbf{1 0}$ shows little selectivity with respect to the configuration at the ring junction (Table 1, entry 5).

In conclusion, it was shown that readily available sulfonyl ketone 2 may be stereoselectively transformed into $5 \alpha$ - or $5 \beta$-cholestane derivatives, 7 or $\mathbf{8}$. Reduction of the sulfurcontaining $\alpha, \beta$-unsaturated ketones $\mathbf{1}$ and 2, and of the respective alcohols, has been scrutinized. Some mechanistic
suggestions regarding the multistep reduction have been made.

## Experimental

Mps were determined on a Kofler hot-stage melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were performed for samples in $\mathrm{CDCl}_{3}$ on a Varian Gemini 200 MHz spectrometer using residual $\mathrm{CHCl}_{3}$ as an internal standard ( $\delta 7.26$ and 77.0 , respectively). Signal multiplicities in ${ }^{13} \mathrm{C}$ spectra were assigned using DEPT sequence and are given in brackets. $J$-Values are given in Hz. Mass spectra were taken at an ionizing voltage of 70 eV ; peak $(\mathrm{m} / \mathrm{z})$ relative intensities are given in parentheses. Air-sensitive reactions were performed in oven- or flame-dried glassware under argon. Bulk solution of $\mathrm{LiAlH}_{4}(1 \mathrm{M})$ was prepared using freshly purchased reagent (Aldrich) and $\mathrm{Na} / \mathrm{K}$ alloy-dried THF. Organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were evaporated on a rotary evaporator.

## 4-(Phenylsulfanyl)cholest-4-en-3-one 1

This compound was prepared from $4 \beta, 5$-epoxy- $5 \beta$-cholestan-3one ${ }^{9}$ following the described procedure; ${ }^{10} \mathrm{mp} 105^{\circ} \mathrm{C}$ (Found: C, 80.62; H, 9.70. Calc. for $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{OS}: \mathrm{C}, 80.43 ; \mathrm{H}, 9.82 \%$ ); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 321.3,250.4,202.5 ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1679,1581$, 1557; $\delta_{\mathrm{H}} 7.24-7.02(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.62(1 \mathrm{H}, \mathrm{dtd}, J 14.5,3.0$, $0.5), 2.54(2 \mathrm{H}, \mathrm{dd}, J 9.9,4.5), 2.23(1 \mathrm{H}, \mathrm{td}, J 14.2,5.3), 1.29$ $\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.91\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 6.5,21-\mathrm{H}_{3}\right), 0.86(6 \mathrm{H}, \mathrm{d}$, $J_{25,26}$ and $25,276.6,26-$ and $\left.27-\mathrm{H}_{3}\right), 0.71\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 194.1$, $177.9,137.23,128.7,126.9,125.1,56.0,55.7,54.2,42.3,41.6$, $39.5,39.4,36.0,35.6,35.2,34.6,34.4,32.0,31.0,28.1,27.9$, 24.0, 23.7, 22.7, 22.5, 21.1, 18.6, 18.3, 11.9. Physical constants were in agreement with those described, with the exception of ${ }^{1} \mathrm{H}$ NMR signal at $\delta 3.62(1 \mathrm{H})$ which has been not recorded in the original characterization.

## 4-(Phenylsulfonyl)cholest-4-en-3-one 2

To a stirred solution of sulfide $1(604 \mathrm{mg}, 1.23 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(10 \mathrm{~cm}^{3}\right)$ was added MCPBA $(60 \% ; 734 \mathrm{mg}, 2.55 \mathrm{mmol})$ in portions. After 2 h , the mixture was partitioned between aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was washed with water and the solvent was evaporated. The residue was crystallized from acetone-hexane to give sulfone 2 ( $528 \mathrm{mg}, 82 \%$ ), mp $146-148{ }^{\circ} \mathrm{C} ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 253.3,221.7,199.6 ; v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1688 ; \delta_{\mathrm{H}} 8.02-7.92(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.58-7.42(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 4.32(1 \mathrm{H}, \mathrm{dt}, J 14.1,2.8), 2.38-0.82(26 \mathrm{H}, \mathrm{m})$ over-
lapping with $1.25\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.89\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 7.0,21-\mathrm{H}_{3}\right)$, $0.85\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and $\left.25,27.0,26-\mathrm{and} 27-\mathrm{H}_{3}\right), 0.70(3 \mathrm{H}, \mathrm{s}$, $18-\mathrm{H}_{3}$ ) ; $\delta_{\mathrm{C}} 192.0(\mathrm{C}-3), 181.2$ (C-4 or -5 ), 142.6 (C-5 or -4), 136.1 (C-ipso), 132.7 (C-o), 128.4 (C-m), 127.7 (C-p), 55.9, 55.5, $54.7,42.8,42.3,39.4,39.3,36.0,35.6,35.1,34.1,33.4,32.6$, 28.1, 27.9, 27.6, 23.9, 23.7, 22.7, 22.5, 21.3, 18.5, 18.4, 11.9 (C-18); $m / z$ (EI) $524.33234\left(\mathrm{M}^{+}, 22 \% . \mathrm{C}_{33} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{~S}\right.$ requires $M$, $\left.524.33241), 509\left[\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}, 2\right)\right], 460\left[\left(\mathrm{M}-\mathrm{SO}_{2}\right)^{+}, 100\right], 445$ (13), 383 [( $\left.\left.\mathrm{M}-\mathrm{SO}_{2} \mathrm{Ph}\right)^{+}, 83\right]$.

## 4 $\beta$-Phenylsulfanyl-5 $\alpha$-cholestan- $3 \alpha$-ol 4

To anhydrous EtOH ( $30 \mathrm{~cm}^{3}$ ) was added sodium ( $214 \mathrm{mg}, 9.3$ mg -atom). After the reaction was complete, thiophenol ( 0.94 $\mathrm{cm}^{3}, 9.15 \mathrm{mmol}$ ) was added, followed by $3 \alpha, 4 \alpha$-epoxy- $5 \alpha-$ cholestane $3^{11,12}(1.80 \mathrm{~g}, 4.6 \mathrm{mmol})$. The mixture was heated under reflux for 24 h , cooled and partitioned between water and benzene. The organic extract was washed with water and evaporated. The residue was chromatographed on $\mathrm{SiO}_{2}(10 \mathrm{~g}$; hexane-EtOAc, 9:1) to give compound $4(1.93 \mathrm{~g}, 83 \%)$, mp $133^{\circ} \mathrm{C}$ (from EtOH); $\delta_{\mathrm{H}} 7.41-7.12(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.02(1 \mathrm{H}, \mathrm{br}$ d, $\left.J_{3,4} 2.2,3-\mathrm{H}_{3}\right), 3.17\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $\left.J_{3,4} 2.2, J_{4,5} 2.2,4-\mathrm{H}_{3}\right), 0.97$ ( $3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}$ ), $0.91\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 7.1,21-\mathrm{H}_{3}\right)$ overlapping with $0.87\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and $25,276.7,26-$ and $\left.27-\mathrm{H}_{3}\right), 0.66(3 \mathrm{H}, \mathrm{s}$, $\left.18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 137.9(\mathrm{C}-i), 130.5(\mathrm{C}-o), 120.9(\mathrm{C}-m), 126.3(\mathrm{C}-p)$, 70.2 (C-3), $56.7,56.5,56.2,55.1,42.8,42.5,39.9,39.5,36.5$, $36.2,35.8,35.3,32.3,31.6,28.2,28.0,27.5,24.3,24.2$, 23.9, 22.8, 22.6, 20.5, 18.7, 13.7 (C-19), 12.0 (C-18); m/z (EI) $496.37312\left(\mathrm{M}^{+}, 84 \% . \mathrm{C}_{33} \mathrm{H}_{52} \mathrm{OS}\right.$ requires $M, 496.373$ 89), 386 (14), 369 (100), 353 (5), 287 (8), 273 (8), 257 (7), 243 (10), 229 (7), 215 (11), 189 (7), 175 (10), 161 (24), 147 (12), 135 (18), 121 (10), 107 (15).

## 4 $\beta$-Phenylsulfonyl-5 $\alpha$-cholestan- $\mathbf{3 \alpha}$-ol 5

To a solution of sulfide $4(598 \mathrm{mg}, 1.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ $\mathrm{cm}^{3}$ ) was added MCPBA ( $60 \% ; 710 \mathrm{mg}, 2.47 \mathrm{mmol}$ ). The mixture was stirred for 2 h and then partitioned between aq $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was isolated in the usual way to give sulfone $5(627 \mathrm{mg}, 98 \%), \delta_{\mathrm{H}} 7.91-7.82(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.65-7.45 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ), 4.13 ( 1 H , br s, $3-\mathrm{H}$ ), 3.26 ( 1 H , d, $J 5.3,4-\mathrm{H}), 1.19\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.90\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 7.3,21-\mathrm{H}_{3}\right)$ overlapping with $0.86\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and $25,276.7,26-$ and $\left.27-\mathrm{H}_{3}\right)$, $0.66\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 141.6(\mathrm{C}-i), 133.2(\mathrm{C}-o), 129.1(\mathrm{C}-m)$, 127.9 (C-p), 70.6 (C-3), 65.2 (C-4), 56.4, 56.2, 55.6, 45.2, 42.4, $39.9,39.5,36.2,35.8,35.4,33.3,31.9,28.2,28.0,27.3,25.7$, 24.2, 23.8, 22.8, 22.6, 20.9, 18.7, 13.4 (C-19), 12.0 (C-18); m/z (EI) $528.36367\left(\mathrm{M}^{+}, 5 \% . \mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{~S}\right.$ requires $M$, 528.36371 ), 510 [(M - $\left.\left.\mathrm{H}_{2} \mathrm{O}\right), 8\right], 495$ (4), 445 (3), 387 (23), 369 (100), 355 (17), 341 (3), 313 (2), 287 (6), 257 (6), 247 (10), 229 (23), 215 (33), 201 (8), 175 (10), 161 (20), 147 (21), 135 (27), 121 (23), 107 (28), 95 (38), 81 (47).

## 4-Phenylsulfonyl-5a-cholest-3-ene 6

To a solution of hydroxy sulfide $5(306 \mathrm{mg}, 0.62 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Et}_{3} \mathrm{~N}\left(0.26 \mathrm{~cm}^{3}, 1.9 \mathrm{mmol}\right)$ followed by $\mathrm{MsCl}\left(0.09 \mathrm{~cm}^{3}, 1.2 \mathrm{mmol}\right)$. The mixture was set aside for 4 h and then partitioned between hexane and water. The hexane layer was washed consecutively with $3 \% \mathrm{HCl}$ and water. The solvent was evaporated to give $3 \xi$-chloro- $4 \beta$-phenylsulfanyl-5 $\alpha$ cholestane ( $316 \mathrm{mg}, 100 \%$ ), $\delta_{\mathrm{H}} 7.38-7.20(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.45$ $\left(1 \mathrm{H}, \mathrm{br}\right.$ d, $\left.J_{3,4} 2.2,3-\mathrm{H}\right), 3.43\left(1 \mathrm{H}\right.$, br dd, $J_{3,4} 2.2, J_{4,5} 2.2$, 4-H), 2.59-2.38 ( $1 \mathrm{H}, \mathrm{m}$ ), 2.29-2.16 ( $1 \mathrm{H}, \mathrm{m}$ ), $1.00(3 \mathrm{H}, \mathrm{s}$, $\left.19-\mathrm{H}_{3}\right), 0.92\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 7.5,21-\mathrm{H}_{3}\right), 0.89\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and 25,27 6.8, $26-$ and $\left.27-\mathrm{H}_{3}\right), 0.67\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 136.9(\mathrm{C}-i), 130.3$ (C-o), 129.1 (C-m), 126.7 (C-p), 62.4 (C-3), 57.1, 56.5, 56.2, $54.8,42.5,42.3,39.8,39.5,36.6,36.2,35.8,35.3,32.1,31.8$, $28.2,28.0,27.4,25.0,24.2,23.9,22.8,22.6,20.5,18.7,14.3$ (C-19), 12.0 (C-18).

To a solution of the crude chloride ( $226 \mathrm{mg}, 0.44 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added MCPBA ( $60 \% ; 256 \mathrm{mg}, 0.89$
mmol ). After 8 h the mixture was partitioned between benzene and aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The organic layer was washed successively with aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and water. Evaporation of the solvent gave $3 \xi$-chloro- $4 \beta$-phenylsulfonyl-5a-cholestane ( 239 mg , $100 \%$ ), $\delta_{\mathrm{H}} 7.94-7.86$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ), 7.69-7.51 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ), $4.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}), 3.42\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{4,5} 4.3,4-\mathrm{H}\right), 2.74-2.56$ $(1 \mathrm{H}, \mathrm{m}), 2.41-2.23(2 \mathrm{H}, \mathrm{m}), 1.21\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.90(3 \mathrm{H}, \mathrm{d}$, $\left.J_{20,21} 8.1,21-\mathrm{H}_{3}\right)$, overlapping with $0.86\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and $25,276.6$, $26-$ and $\left.27-\mathrm{H}_{3}\right), 0.67\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 141.1(\mathrm{C}-i)(0), 133.6$ $(\mathrm{C}-o)(1), 129.3(\mathrm{C}-m)(1), 127.7(\mathrm{C}-p)(1), 71.4(\mathrm{C}-3)(1), 56.3(1)$, 56.2 (1), 55.3 (1), 44.7 (1), 42.4 (0), 39.8 (2), 39.5 (2), 36.1 (2), 35.9 (1), 35.7 (1), 35.4 (1), 33.2 (2), 32.1 (2), 28.2 (2), 28.0 (1), 27.1 (2), 26.6 (2), 24.1 (2), 23.8 (2), 22.8 (C-26 or -27)(3), 22.5 (C-27 or -26)(3), 20.9 (2), 18.6 (C-21)(3), 13.6 (C-19)(3), 12.0 (C-18)(3).

A solution of the later product ( $239 \mathrm{mg}, 0.44 \mathrm{mmol}$ ) in benzene $\left(10 \mathrm{~cm}^{3}\right)$ containing $\operatorname{DBU}\left(0.07 \mathrm{~cm}^{3}, 0.46 \mathrm{mmol}\right)$ was heated under reflux for 30 min and then cooled and partitioned between benzene and $3 \% \mathrm{HCl}$. The organic layer was washed with water and the solvent was evaporated to give vinylic sulfone 6 ( $220 \mathrm{mg}, 99 \%$ ), $\delta_{\mathrm{H}} 7.83-7.76$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ), 7.60-7.44 ( 3 H , $\mathrm{m}, \mathrm{ArH}), 7.14\left(1 \mathrm{H}, \mathrm{brd}, J_{2,3} 3.1,3-\mathrm{H}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 5.0\right.$, $21-\mathrm{H})$ overlapping with $0.84\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and $25,276.3,26$ - and $\left.27-\mathrm{H}_{3}\right), 0.70\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.59\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 141.7(\mathrm{C}-4$ or $-i)(0)$, 141.1 (C-i or -4$)(0), 140.3$ (C-3)(1), 132.6 (C-o)(1), 128.8 (C-m)(1), 127.1 (C-p)(1), 56.1 (1), 56.1 (1), 52.8 (1), 45.8 (1), 42.4 (0), 39.9 (2), 39.4 (2), 36.1 (2), 35.7 (1), 34.8 (1), 32.8 (2), 31.4 (2), 28.2 (2), 27.9 (1), 23.9 (2), 23.8 (2), 23.6 (2), 23.4 (2), 22.8 (C-26 or -27 )(3), 22.5 (C-27 or -26)(3), 21.4 (2), 18.6 (C-21)(3), 12.4 (C-19)(3), 12.0 (C-18)(3); m/z (EI) 510.35364 $\left(\mathrm{M}^{+}, 63 \% . \mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{2} \mathrm{~S}\right.$ requires $M, 510.353$ 15), 495 (23), 462 (3), 445 (12), 397 (3), 369 (42), 355 (100), 341 (20), 287 (10), 275 (22), 259 (7), 235 (10), 229 (17), 213 (22), 199 (5), 171 (6), 161 (8), 147 (13), 135 (23), 121 (35), 107 (28), 95 (35), 81 (65).

## $4 \alpha$-Phenylsulfonyl-5 $\alpha$-cholestane 7 a and $4 \beta$-phenylsulfonyl-5 $\alpha$ cholestane 7b

(a) To a stirred solution of vinyl sulfone $\mathbf{6}(100 \mathrm{mg}, 0.2 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ was added a solution of $\operatorname{LiEt}_{3} \mathrm{BH}(0.5 \mathrm{M}$ in THF; $0.25 \mathrm{~cm}^{3}, 0.125 \mathrm{mmol}$ ). The mixture was set aside for 2 h and then partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The organic solution was evaporated and the residue was chromatographed on $\mathrm{SiO}_{2}(6 \mathrm{~g}$; hexane-AcOEt, 9:1) to give consecutively 7 bb (20 $\mathrm{mg}, 20 \%$ ) and then $7 \mathrm{a}(79 \mathrm{mg}, 79 \%)$.
(b) To a solution of hydroxy sulfone $5(108 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$, stirred under argon at $-20^{\circ} \mathrm{C}$, was added $\mathrm{Et}_{3} \mathrm{~N}$ $\left(0.09 \mathrm{~cm}^{3}, 0.65 \mathrm{mmol}\right)$ followed by $\mathrm{MsCl}\left(0.03 \mathrm{~cm}^{3}, 0.39 \mathrm{mmol}\right)$. After 1 h , water $\left(5 \mathrm{~cm}^{3}\right)$ was added. The mixture was allowed to warm to room temperature and then was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was dried and evaporated to give the crude mesyl ester. The later product was dissolved in THF $\left(5 \mathrm{~cm}^{3}\right)$ and treated with $\mathrm{LiEtBH}_{3}\left(0.5 \mathrm{M}\right.$ in THF; $0.7 \mathrm{~cm}^{3}, 0.35$ $\mathrm{mmol})$. The mixture was stirred at room temperature for 0.5 h , and then was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was dried and concentrated. The residue was chromatographed on $\mathrm{SiO}_{2}(10 \mathrm{~g}$; hexane-ethyl acetate, $9: 1)$ to give $\mathbf{7 b}$ ( $19 \mathrm{mg}, 18 \%$ ), $7 \mathbf{a}(80 \mathrm{mg}, 76 \%$ ) and a fraction containing both these components ( $5 \mathrm{mg}, 5 \%$ ).

Compound 7b had $\delta_{\mathrm{H}} 7.96-7.87$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ), 7.63-7.48 ( $3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ), $3.21(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 5.2,4-\mathrm{H}), 1.23(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H})$, $0.89\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 7.0,21-\mathrm{H}_{3}\right)$ overlapping with $0.86(6 \mathrm{H}, \mathrm{d}$, $J_{25,26}$ and $25,277.0,26-$ and $\left.27-\mathrm{H}_{3}\right), 0.66\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)\left[\mathrm{lit}\right.$., ${ }^{14}$ $\left.\delta_{\mathrm{H}} 3.22(4-\mathrm{H}), 1.24\left(19-\mathrm{H}_{3}\right), 0.68\left(18-\mathrm{H}_{3}\right)\right]$.

Compound 7a had $\delta_{\mathrm{H}} 7.87-7.78$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ), 7.66-7.47 $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.04(1 \mathrm{H}, \mathrm{brt}, J 10.7,4-\mathrm{H}), 2.43(1 \mathrm{H}, \mathrm{dd}$, $J 13.6,2.4), 0.89\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 5.2,21-\mathrm{H}_{3}\right)$ overlapping with 0.85 $\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and 25,27 7.1, 26- and $27-\mathrm{H}_{3}$ ) overlapping with 0.83 $\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.63\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 139.1(\mathrm{C}-i)(0), 133.1$ (C-o)(1), 128.9 (C-m)(1), 128.5 (C-p)(1), 64.5 (C-4)(1), 56.3 (1), 56.1 (1), 54.4 (1), 46.7 (1), 42.3 (0), 39.9 (2), 39.5 (2), 37.5 (0),
37.4 (2), 36.1 (2), 35.7 (1), 34.6 (1), 31.4 (2), 28.8 (2), 28.2 (2), 28.0 (1), 25.4 (2), 24.0 (2), 23.8 (2), 22.8 (C-26 or -27)(3), 22.5 (C-27 or -26)(3), 21.1 (2), 20.6 (2), 18.6 (C-21)(3), 13.3 (C-19)(3), $12.0(\mathrm{C}-18)(3)\left[\right.$ lit., $\left.{ }^{14} \delta_{\mathrm{H}} 2.96(4-\mathrm{H}), 1.27\left(19-\mathrm{H}_{3}\right), 0.65\left(18-\mathrm{H}_{3}\right)\right]$.

## Reduction of 2 with $\mathrm{LiAlH}_{4}$. 4 $\beta$-Phenylsulfonyl- $5 \beta$-cholestane 8

To a stirred solution of compound $2(120 \mathrm{mg}, 0.229 \mathrm{mmol})$ in THF ( $5 \mathrm{~cm}^{3}$ ) was added $\mathrm{LiAlH}_{4}$ ( 1 M in THF; $3 \mathrm{~cm}^{3}, 3.00$ $\mathrm{mmol})$ dropwise. The reaction was quenched with $\mathrm{MeOH}^{18}$ $\left(1 \mathrm{~cm}^{3}\right)$ and the mixture was poured into $10 \%$ aq. tartaric acid. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was evaporated and the residue was chromatographed on $\mathrm{SiO}_{2}(6 \mathrm{~g}$; hexane-EtOAc, 50:1, 10:1 and 5:1) to give compound $\mathbf{8}$ (92 $\mathrm{mg}, 78 \%), \delta_{\mathrm{H}} 7.88-7.78(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.66-7.46(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 3.55\left(1 \mathrm{H}, \mathrm{td}, J 11.1,3.7,4-\mathrm{H}_{3}\right), 2.51-2.37(1 \mathrm{H}, \mathrm{m}), 0.99$ $\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.88\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 6.3,21-\mathrm{H}_{3}\right), 0.85\left(3 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ $\left.6.6,26-\mathrm{H}_{3}\right), 0.85\left(3 \mathrm{H}, \mathrm{d}, J_{25,27} 6.6,27-\mathrm{H}_{3}\right), 0.63\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$; $\delta_{\mathrm{C}} 138.9(\mathrm{C}-i)(0), 133.1(\mathrm{C}-o)(1), 128.8(\mathrm{C}-m)(1), 128.5(\mathrm{C}-p)(1)$, 61.1 (C-4)(1), 56.5 (1), 56.3 (1), 43.6 (1), 42.6 (0), 42.1 (1), 40.1 (2), 39.4 (2), 37.1 (0), 36.5 (2), 36.1 (2), 35.7 (1), 35.7 (1), 28.9 (2), 28.3 (2), 28.0 (1), 26.1 (2), 24.1 (C-21)(3), 23.8 (2), 23.1 (2), 22.8 (C-26)(3), 22.5 (C-27)(3), 20.8 (2), 19.5 (2), 18.6 (C-19)(3), 12.0 (C-18)(3); m/z (EI) $512.36899\left(\mathrm{M}^{+}, 0.5 \% . \mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{2} \mathrm{~S}\right.$ requires $M, 512.36880$ ), 510 (1), $495(0.3), 447$ ( 0.3 ), 397 ( 0.4 ), 371 (100), 355 (7), 245 (14), 163 (23), 149 (35), 135 (30), 109 (41), 95 (55), 81 (45).

## Desulfuration of 8

To a stirred solution of sulfone $\mathbf{8}(30 \mathrm{mg}, 0.06 \mathrm{mmol})$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ and $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ was added $6 \%$ sodium amalgam $(310 \mathrm{mg})$ in portions during 12 h . The mixture was partitioned between hexane and water, and the product was isolated in the usual way. $5 \beta$-Cholestane was obtained ( $21 \mathrm{mg}, 96 \%$ ), $\delta_{\mathrm{H}} 0.91$ $\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right)$ overlapping with $0.90\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 6.5,21-\mathrm{H}_{3}\right)$ overlapping with 0.86 ( $6 \mathrm{H}, \mathrm{d}, J_{25,26}$ and 25,27 6.7, 26- and $27-\mathrm{H}_{3}$ ), $0.64\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 56.7,56.4,43.8,42.7,40.6,40.3,39.5$, 37.6, 36.2, 35.9, 35.8, 35.4, 28.3, 28.0, 27.6, 27.3, 27.1, 26.6, 24.3, 23.8, 22.8, 22.6, 21.4, 20.9, 18.7, 12.1 (lit., ${ }^{19} \delta_{\mathrm{C}} 56.6,56.3$, 43.7, 42.7, 40.5, 40.3, 39.5, 37.6, 36.2, 35.9, 35.8, 35.3, 28.3, 28.0, 27.5, 27.2, 27.0, 26.6, 24.3, 23.8, 22.8, 22.5, 21.3, 20.8, 18.6, 12.0).

## Reduction of 2 with $\mathrm{NaBH}_{4}$ in MeOH. 4 $\alpha$-Phenylsulfonyl-5 $\alpha$ -cholestan- $3 \alpha$-ol 9 and $4 \beta$-phenylsulfonyl- $5 \beta$-cholestan- $3 \beta$-ol 10

To a stirred solution of ketone $2(201 \mathrm{mg}, 0.38 \mathrm{mmol})$ in MeOH $\left(20 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NaBH}_{4}(161 \mathrm{mg}, 4.2 \mathrm{mmol})$ in portions during 7 h . The mixture was set aside for 16 h and then was poured into water. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was evaporated. The residue was chromatographed on $\mathrm{SiO}_{2}(7 \mathrm{~g}$; benzene-EtOAc, 85:15). A mixture of alcohols 9 and 10 was obtained ( $168 \mathrm{mg}, 83 \%$ ). A sample of pure isomer 9 was obtained by dissolution of the mixture in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and precipitation of an amorphous solid with pentane; $\delta_{\mathrm{H}} 7.96-7.88$ ( 2 H , $\mathrm{m}, \mathrm{ArH}), 7.70-7.51(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.75\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}_{3}\right), 3.10$ ( $1 \mathrm{H}, \mathrm{dd}, J_{4,5} 11.5, J_{3,4} 1.8,4-\mathrm{H}$ ), 2.38-2.20 ( $2 \mathrm{H}, \mathrm{m}$ ), 2.01-0.81 $(29 \mathrm{H}, \mathrm{m})$ overlapping with $0.89\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 6.2,21-\mathrm{H}_{3}\right), 0.85$ $\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and $25,277.3,26$ - and $27-\mathrm{H}_{3}$ ) overlapping with 0.84 $\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.64\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$; NOE experiments: Irradiation at $\delta 0.84 \mathrm{ppm}\left(19-\mathrm{H}_{3}\right)$ led to an increase of intensity of the signal at $\delta 3.1(3-\mathrm{H})$ by $1.4 \%$ being observed. Irradiation at $\delta 3.10(4-\mathrm{H})$ led to an increase of signals at $\delta 0.84$ by $1.4 \%$ and at $\delta 3.75 \mathrm{ppm}(3-\mathrm{H})$ by $5.2 \%$. Upon irradiation at $\delta 3.75$ an increase of the signal at $\delta 3.10$ by $5.0 \%$ was observed; $\delta_{\mathrm{C}} 139.5$ $(\mathrm{C}-i)(0), 133.5(\mathrm{C}-o)(1), 129.1$ (C-m)(1), 128.1 (C-p)(1), 67.8 (C-3 or -4 )(1), 65.1 (C-4 or 3)(1), 56.2 (1), 56.1 (1), 54.1 (1), 42.3 (0), 40.3 (1), 39.9 (2), 39.5 (2), 37.7 (0), 36.1 (2), 35.8 (1), 34.6 (1), 31.5 (2), 31.2 (2), 28.3 (2), 28.2 (2), 28.0 (1), 25.2 (2), 24.0 (2), 23.8 (2), 22.8 (3), 22.5 (3), 21.2 (2), 18.6 (3), 12.4 (C-19)(3),
12.0 (C-18)(3); m/z (EI) $528.36368\left(\mathrm{M}^{+}, 8 \% \mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{~S}\right.$ requires $M$, 528.36371 ), 463 (3), 445 (8), 387 (86), 369 (100), 353 (5), 329 (3), 287 (5), 261 (8), 243 (10), 231 (21), 215 (12), 175 (11), 161 (14), 135 (16), 107 (7).

Compound 10: $\delta_{\mathrm{H}}$ selected signals: $3.91(1 \mathrm{H}, \mathrm{br}$ s), $3.15(1 \mathrm{H}$, dd, $J 12.1,2.0), 1.03\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right)$.
On attempted reduction of 2 with $\mathrm{NaBH}_{4}$ in MeOH at the reflux temp., the enol of $\mathbf{2}$ [4-(phenylsulfonyl)cholesta-3,5-dien3 -ol] was obtained in $85 \%$ yield, $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 201.3,222.5$, 248.9, 286.8; $\delta_{\mathrm{H}} 11.25(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, 7.84-7.77 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ), $7.67-7.43(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.08\left(1 \mathrm{H}, \mathrm{dd}, J_{6.7 \mathrm{a}} 5.5, J_{6,7 \mathrm{~b}} 2.7,6-\mathrm{H}\right)$, 2.50-2.38 ( $2 \mathrm{H}, \mathrm{m}$ ), $0.88\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 6.0,21-\mathrm{H}_{3}\right.$ ) overlapping with $0.85\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and $25,276.2,26-$ and $\left.27-\mathrm{H}\right), 0.62(3 \mathrm{H}, \mathrm{s}$, $19-\mathrm{H}_{3}$ ), $0.59\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 165.4,140.8(\mathrm{C}-i), 133.1(\mathrm{C}-o)$, 131.8, 128.6 (C-m), 127.0 (C-p), 122.0, 106.6, 56.6, 56.0, 48.7, 39.6, 39.5, 42.2, 39.6, 39.5, 36.1, 35.9, 35.7, 32.1, 31.8, 30.5, $28.2,28.0,27.5,24.1,23.8,22.8,22.5,21.1,18.6,17.3,11.8$ (C-18); $m / z$ (EI) 524 (M ${ }^{+}, 19 \%$ ), 509 (2), 460 (100), 445 (15), 427 (3), 383 (43), 369 (3), 365 (4), 271 (10), 257 (8), 247 (10), 229 (15), 213 (8), 197 (16), 173 (15), 147 (15), 135 (18), 121 (19), 105 (22), 95 (35)

## 4 $\alpha$-Phenylsulfonyl-5 $\alpha$-cholestan-3-one 11 and 4 $\beta$-phenylsulfonyl$\mathbf{5} \beta$-cholestan-3-one 12

A mixture of $\mathbf{9}$ and $\mathbf{1 0}$, as described above, $(95 \mathrm{mg}, 0.18 \mathrm{mmol})$ was dissolved in acetone $\left(5 \mathrm{~cm}^{3}\right)$ and treated with Jones reagent until the brown colour persisted ( $2.7 \mathrm{M} ; 0.1 \mathrm{~cm}^{3}, 0.27 \mathrm{mmol}$ ), then some propan-2-ol was added and the solution was partitioned between water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was evaporated. The residue was chromatographed on $\mathrm{SiO}_{2}(10 \mathrm{~g}$; hexane-EtOAc, $92: 8$ ) to give consecutively ketones $12(39 \mathrm{mg}$, $41 \%$ ) and 11 ( $55 \mathrm{mg}, 58 \%$ ).

Compound 12 showed $\delta_{\mathrm{H}} 7.82-7.75(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.71-7.50$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.63\left(1 \mathrm{H}, \mathrm{d}, J_{4,5} 6.3,4-\mathrm{H}\right), 2.76(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.55$ ( $1 \mathrm{H}, \mathrm{dd}, J 19.6,7.1$ ), 2.35-2.13 ( $1 \mathrm{H}, \mathrm{m}$ ), $1.12\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right)$, $0.87\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 6.4,21-\mathrm{H}_{3}\right), 0.84\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and $25,276.0$, $26-$ and $\left.27-\mathrm{H}_{3}\right), 0.63\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 204.3(\mathrm{C}-3), 137.6(\mathrm{C}-i)$, 134.0 (C-o), 129.0 (C-m), 128.9 (C-p), 76.5 (C-4), 56.1, 55.9, $43.5,42.8,42.5,39.5,39.4,36.1,35.7,35.0,34.8,34.6,32.1$, 28.2, 28.0, 26.3, 24.0, 23.8, 22.8, 22.5, 22.3, 21.4, 18.6, 11.9 (C-18); $m / z$ (EI) $526.34800\left(\mathrm{M}^{+}, 2 \% . \mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{~S}\right.$ requires $M$, 526.348 06), 511 (1), 462 (7), 385 (100), 367 (20), 315 (13), 275 (5), 245 (12), 231 (22), 213 (8), 161 (12), 135 (12), 121 (22), 95 (32).

Compound 11 showed $\delta_{\mathrm{H}} 7.82-7.74$ ( $2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ), 7.69-7.48 $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 3.49\left(1 \mathrm{H}, \mathrm{dd}, J_{4.5} 9.1,1.3,4-\mathrm{H}\right), 2.87-2.53(3 \mathrm{H}$, $\mathrm{m}), 2.45-2.25(2 \mathrm{H}, \mathrm{m}), 0.90\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 6.6,21-\mathrm{H}_{3}\right)$ overlapping with $0.86\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and $25,27 \mathrm{~F} .1,26-$ and $\left.27-\mathrm{H}_{3}\right), 0.74$ ( $3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}$ ), $0.64\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 204.5(\mathrm{C}-3), 138.0(\mathrm{C}-i)$, 133.9 (C-o), 128.9 (C-m), 128.8 (C-p), 76.2 (C-4), 58.1, 56.0, $53.8,45.2$, $42.5,39.8,39.5,36.1,35.9,35.7,35.6,35.0,34.5$, 31.2, 29.1, 28.2, 28.0, 24.1, 23.8, 22.8, 22.5, 21.4, 18.6, 13.7 (C-19), 12.0 (C-18); $m / z$ (EI) $526.34800\left(\mathrm{M}^{+}, 8 \%\right), 462$ (28), 444 (2), 392 (12), 385 (53), 369 (27), 353 (3), 315 (5), 271 (7), 245 (20), 229 (100), 215 (22), 187 (10), 161 (10).

## Desulfuration of 11

To a mixture of sulfone $\mathbf{1 1}(45 \mathrm{mg}, 0.09 \mathrm{mmol})$, THF ( $2 \mathrm{~cm}^{3}$ ) and $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ was added $6 \%$ sodium amalgam ( 1.2 g ) in portions until starting material was consumed (TLC, 5 days). The mixture was partitioned between hexane and water. The product was isolated in the usual way. $5 \alpha$-Cholestan-3-one was obtained ( $26 \mathrm{mg}, 79 \%$ ), identical in all respects with an authentic sample.

## Desulfuration of 12

Sulfone $12(48 \mathrm{mg}, 0.09 \mathrm{mmol})$ treated with sodium amalgam under conditions analogous to those described above afforded $5 \beta$-cholestan-3-one ( $28 \mathrm{mg}, 80 \%$ ).

## Reduction of 2 with $\mathrm{NaBH}_{4}$ in a mixture of THF and DMPU

To a stirred mixture of $\mathrm{NaBH}_{4}(10 \mathrm{mg}, 0.26 \mathrm{mmol})$, THF ( 2 $\mathrm{cm}^{3}$ ) and 1,3-dimethylperhydropyrimidin- $2(1 \mathrm{H}$ )-one (DMPU) $\left(0.3 \mathrm{~cm}^{3}\right)$ was added ketone $2(105 \mathrm{mg}, 0.2 \mathrm{mmol})$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After $1 \mathrm{~h}\left(\right.$ at $\left.0^{\circ} \mathrm{C}\right)$, the mixture was allowed to warm to room temp. and was partitioned between benzene and $3 \% \mathrm{HCl}$. The organic extract was washed successively with water and brine, and the solvent was evaporated. The residue was chromatographed on $\mathrm{SiO}_{2}$ ( 5 g ; hexane-EtOAc, 95:5) to give compound $12(23 \%)$ and a mixture of alcohols 9 and $\mathbf{1 0}(74 \%)$ in the ratio $5.5: 1$ (determined by ${ }^{1} \mathrm{H}$ NMR after oxidation of the mixture to a mixture of ketones 11 and 12). In an analogous reaction carried out at $-45^{\circ} \mathrm{C}$, ketone $12(24 \%)$ and alcohols 9 and $\mathbf{1 0}$ ( $73 \%$, in the ratio $4.5: 1$, respectively) were obtained.

## Reduction of 11 with $\mathbf{N a B H}_{4}$ in THF-DMPU

A mixture of $\mathbf{1 1}(48 \mathrm{mg}, 0.09 \mathrm{mmol})$, THF ( $1 \mathrm{~cm}^{3}$ ), DMPU ( 0.3 $\mathrm{cm}^{3}$ ) and $\mathrm{NaBH}_{4}(4 \mathrm{mg}, 0.1 \mathrm{mmol})$ was stirred at $0^{\circ} \mathrm{C}$ for 1 h , and then worked up in an analogous manner to that described above. Alcohol $9(47 \mathrm{mg}, 97 \%)$ was obtained.

Attempted reduction of $\mathbf{1 2}$ under analogous conditions failed.

## Reduction of 2 with CuCN-n-BuLi-DIBAH system ${ }^{16,20}$

To a suspension of $\mathrm{CuCN}(46 \mathrm{mg}, 0.513 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ was added $n-\mathrm{BuLi}\left(1.3 \mathrm{M}\right.$ in hexane; $0.39 \mathrm{~cm}^{3}, 0.513 \mathrm{mmol}$ ) at $-20^{\circ} \mathrm{C}$. After 30 min , the mixture was cooled to $-50^{\circ} \mathrm{C}$ and DIBAH ( 0.7 M in hexane; $1.833 \mathrm{~cm}^{3}, 1.283 \mathrm{mmol}$ ) and HMPA $\left(1 \mathrm{~cm}^{3}\right)$ were added consecutively. Stirring at $-50^{\circ} \mathrm{C}$ was continued for 2 h , and then ketone $\mathbf{2}(52.5 \mathrm{mg}, 0.100 \mathrm{mmol})$ in THF $\left(1 \mathrm{~cm}^{3}\right)$ was added. After an additional 3 h , the mixture was allowed to warm to room temp. The reaction was quenched with $\mathrm{MeOH}\left(2 \mathrm{~cm}^{3}\right)$ and the mixture was poured into $10 \%$ aq. tartaric acid. The product was isolated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and chromatographed on $\mathrm{SiO}_{2}(6 \mathrm{~g}$; hexane-EtOAc, $40: 1$, then $20: 1)$ to give 4-(phenylsulfonyl)cholest-4-en-3 $\beta$-ol $\mathbf{1 3 a}$ ( $5 \mathrm{mg}, 10 \%$ ), $\mathbf{1 2}$ ( $11.5 \mathrm{mg}, 22 \%$ ) and 11 ( $20.5 \mathrm{mg}, 39 \%$ ). Compound 13a showed $\delta_{\mathrm{H}} 7.98-7.90(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.62-7.44(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.75$ $\left(1 \mathrm{H}, \mathrm{t}, J_{2,3} 5.5,3-\mathrm{H}_{3}\right), 3.05(1 \mathrm{H}, \mathrm{dt}, J 13.9,1.8), 1.06(3 \mathrm{H}, \mathrm{s}$, $\left.19-\mathrm{H}_{3}\right), 0.86\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 4.6,21-\mathrm{H}_{3}\right), 0.84\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and 25,27 6.6, 26- and $27-\mathrm{H}_{3}$ ), $0.62\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 164.0(\mathrm{C}-4), 143.4$ (C-5), 136.0 (C-i), 132.7 (C-o), 128.9 (C-m), 128.4 (C-p), 65.7 (C-3), 55.9, 55.6, 52.3, 42.4, 41.4, 39.6, 39.4, 36.0, 35.6, 35.2, $32.1,31.0,28.1,27.9,27.7,26.6,23.8,23.7,22.8,22.5,21.5$, 20.5, 18.5, 11.9 (C-18); $m / z$ (LSIMS) $549.33777\left(\mathrm{M}^{+}+\mathrm{Na}\right.$ $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{NaO}_{3} \mathrm{~S}$ requires $\mathrm{m} / \mathrm{z}$, 549.337 84).

## Reduction of 2 with DIBAH. 4-(Phenylsulfonyl)cholest-4-en-3pol 13a

To a solution of $2(210 \mathrm{mg}, 0.38 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$, stirred at $-20^{\circ} \mathrm{C}$, was added DIBAH ( 0.7 M in hexane; 0.65 $\mathrm{cm}^{3}, 0.46 \mathrm{mmol}$ ). After 1 h (at $-20^{\circ} \mathrm{C}$ ) the reaction was quenched with $\mathrm{MeOH}\left(0.1 \mathrm{~cm}^{3}\right)$. The mixture was warmed to room temp. and partitioned between $3 \% \mathrm{HCl}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was isolated in the usual way. Alcohol 13a ( 212 mg , $100 \%$ ) was obtained.

## Reduction of 13a with $\mathrm{LiAlH}_{4}$

A mixture of $\mathbf{1 3 a}(98 \mathrm{mg}, 0.19 \mathrm{mmol})$, THF ( $3 \mathrm{~cm}^{3}$ ) and $\mathrm{LiAlH}_{4}$ $(10 \mathrm{mg}, 0.26 \mathrm{mmol})$ was stirred for 2 h at room temp. Work-up with saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the usual isolation of product gave $\mathbf{8}(70 \mathrm{mg}, 78 \%)$.

## 3 $\beta$-Methoxymethyl-4-(phenylsulfonyl)cholest-4-ene 13b

To mixture of 13a ( $102 \mathrm{mg}, 0.19 \mathrm{mmol}$ ) in THF ( $5 \mathrm{~cm}^{3}$ ) and HMPA ( $0.25 \mathrm{~cm}^{3}$ ) was added NaH ( $55 \%$ in mineral oil; 51 mg ,
$1.17 \mathrm{mmol})$, followed by $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{Cl}\left(90 \% ; 0.06 \mathrm{~cm}^{3}, 0.74\right.$ $\mathrm{mmol})$ and KI $(0.1 \mathrm{mg})$. The mixture was heated under reflux for 24 h and then cooled and partitioned between water and benzene. The organic layer was washed with water and the solvent was evaporated. The residue was chromatographed on $\mathrm{SiO}_{2}(5 \mathrm{~g}$; hexane-EtOAc, $93: 7)$ to give 13b $(106 \mathrm{mg}, 96 \%)$, $\delta_{\mathrm{H}} 7.98-7.88(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.56-7.40(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.95$ $(1 \mathrm{H}, \mathrm{d}, J 7.0,3-\mathrm{H}), 4.68\left(2 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{OCH}_{2} \mathrm{O}\right), 3.39(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{O}\right), 3.07(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 12.9), 1.01\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.86(3 \mathrm{H}$, d, $\left.J_{20,21} 5.4,21-\mathrm{H}_{3}\right)$ overlapping with $0.83\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and 25,27 $6.5,26-$ and $\left.27-\mathrm{H}_{3}\right), 0.62\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 165.2(\mathrm{C}-4)(0), 143.9$ (C-5)(0), 133.8 (C-i)(0), 132.3 (C-o)(1), 128.6 (C-m)(1), 126.6 $(\mathrm{C}-p)(1), 97.7\left(\mathrm{OCH}_{2} \mathrm{O}\right)(2), 71.5(\mathrm{C}-3)(1), 55.9$ (1), 55.8 (1), 55.7 (1), $50.5\left(\mathrm{CH}_{3} \mathrm{O}\right)(3), 42.5$ (0), 41.1 (0), 39.6 (2), 39.4 (2), 36.0 (2), 35.6 (1), 35.3 (1), 32.8 (2), 28.5 (2), 28.2 (2), 27.9 (3), 27.6 (2), 25.6 (2), 23.9 (2), 23.7 (2), 22.7 (3), 22.5 (3), 21.9 (2), 21.5 (3), 18.5 (3), 12.0 (C-18)(3).

## Reduction of 13b with $\mathrm{LiAlH}_{4}$

A mixture of ether 13b ( $102 \mathrm{mg}, 0.18 \mathrm{mmol}$ ), THF ( $5 \mathrm{~cm}^{3}$ ) and $\mathrm{LiAlH}_{4}(35 \mathrm{mg}, 0.92 \mathrm{mmol})$ was heated under reflux for 20 min and cooled. The reagent excess was decomposed with water and the mixture was partitioned between $3 \% \mathrm{HCl}$ and benzene. Product was isolated in the usual way and chromatographed on $\mathrm{SiO}_{2}(5 \mathrm{~g}$; hexane-EtOAc, 9:1). A mixture of sulfones 8, 7 a and 7b was obtained ( $70 \mathrm{mg}, 76 \%$ ) in proportions $5: 4: 1$ by ${ }^{1} \mathrm{H}$ NMR. Rechromatography of the mixture gave pure products $\mathbf{8}$ and 7a and 7b.

## 4-(Phenylsulfonyl)cholest-4-en-3a-ol 15a

(a) From 13a. To a solution of alcohol 13a ( $113 \mathrm{mg}, 0.21$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Ph}_{3} \mathrm{P}(265 \mathrm{mg}, 1.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 2 h and then benzoic acid ( $135 \mathrm{mg}, 1.1 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ and diethyl azodicarboxylate ( $0.175 \mathrm{~cm}^{3}, 1.1 \mathrm{mmol}$ ) were added. The mixture was set aside at room temp. for 4 h and then partitioned between saturated aq. $\mathrm{NaHCO}_{3}$ and benzene. The organic phase was washed with water and the solvent was evaporated. The residue was chromatographed on $\mathrm{SiO}_{2}(5 \mathrm{~g}$; hexane-EtOAc, 95:5) to give benzoate 15b ( 80 mg ). This crude product was dissolved in $5 \%$ methanolic $\mathrm{KOH}\left(3 \mathrm{~cm}^{3}\right)$ and set aside for 16 h . The usual work-up and chromatography of the product on $\mathrm{SiO}_{2}$ ( 5 g ; hexane-EtOAc, $8: 2$ ) gave alcohol 15 a ( $72 \mathrm{mg}, 64 \%$ ).
(b) From 16a. To a solution of sulfide 16a (see below) ( 59 mg , 0.119 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was added MCPBA ( $60 \%$; 70 $\mathrm{mg}, 0.243 \mathrm{mmol}$ ) at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temp. for 1 h and poured into aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed successively with aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and water, and the solvent was evaporated. The residue was chromatographed on $\mathrm{SiO}_{2}(2 \mathrm{~g}$; hexane-EtOAc, $50: 1$, $25: 1,10: 1)$ to give alcohol $15 \mathrm{a}(61 \mathrm{mg}, 97 \%), \delta_{\mathrm{H}} 7.97-7.90(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.63-7.46(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.77\left(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}_{3}\right), 3.15$ $(1 \mathrm{H}, \mathrm{dt}, J 14.5,3.3), 1.03\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 4.7\right.$, $\left.21-\mathrm{H}_{3}\right)$ overlapping with $0.85\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and $25,275.7,26$ - and $\left.27-\mathrm{H}_{3}\right), 0.63\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 163.0(\mathrm{C}-4)(0), 143.1(\mathrm{C}-5)(0)$, 135.6 (C-i)(0), 132.7 (C-o)(1), 128.9 (C-m)(1), 126.7 (C-p)(1), 62.9 (C-3)(1), 55.8 (1), 55.4 (1), 54.5 (1), 42.2 (0), 40.9 (0), 39.5 (2), 39.3 (2), 35.9 (1), 35.6 (1), 34.9 (1), 31.2 (2), 30.8 (2), 28.0 (2), 27.9 (1), 27.2 (2), 26.5 (2), 23.8 (2), 23.6 (2), 22.7 (3), 22.4 (2), 21.6 (2), 18.4 (2C)(3), 11.8 (C-18)(3); $m / z$ (EI) $525\left(\mathrm{M}^{+}\right.$, $0.3 \%), 508.3373\left[\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}\right.$, 99. $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{m} / \mathrm{z}$, 508.3375], 493 (19), 444 (54), 429 (9), 395 (44), 385 (8), 367 (82), 351 (8), 261 (81), 247 (62), 159 (33), 147 (80), 135 (71), 119 (42), 109 (54), 105 (100), 95 (82), 91 (52), 81 (71), 69 (45), 55 (50), 43 (45).

## Reduction of $15 a$ with $\mathrm{LiAlH}_{4}$

To a solution of alcohol 15 a ( $70 \mathrm{mg}, 0.13 \mathrm{mmol}$ ) in THF ( $2 \mathrm{~cm}^{3}$ )
was added $\mathrm{LiAlH}_{4}(10 \mathrm{mg}, 0.26 \mathrm{mmol})$ and the mixture was stirred for 2 h . The reagent excess was decomposed with saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solid was filtered off and the solvent was evaporated. The residue was chromatographed on $\mathrm{SiO}_{2}$ ( 5 g ; hexane-EtOAc, 9:1) to give compound 7 a ( $56 \mathrm{mg}, 82 \%$ ).

## Reduction of 1 with DIBAH. 4-(Phenylsulfanyl)cholest-4-en-3 $\beta$ ol 14 and 4-(phenylsulfanyl)cholest-4-en-3a-ol 16a

To a solution of $\mathbf{1}(450 \mathrm{mg}, 0.91 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added DIBAH ( 0.7 M in hexane; $4.4 \mathrm{~cm}^{3}, 3.08 \mathrm{mmol}$ ) at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and allowed to warm to room temp. The reaction was quenched with MeOH $\left(2 \mathrm{~cm}^{3}\right)$ and the mixture was poured into $10 \%$ aq. tartaric acid. The product was isolated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and chromatographed on $\mathrm{SiO}_{2}(45 \mathrm{~g}$; hexane-EtOAc, 100:1 and 75:1) to give alcohols $14(312 \mathrm{mg}, 69 \%)$ and 16a ( $96 \mathrm{mg}, 21 \%$ ).

Compound 14 showed $\delta_{\mathrm{H}} 7.31-7.08$ ( $5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ), 4.08-3.86 $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.31-3.18(1 \mathrm{H}, \mathrm{m}, 8$ lines, $6-\alpha \mathrm{H}), 2.90(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, 3-\mathrm{OH}), 1.17\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.92\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 6.6,21-\mathrm{H}_{3}\right)$, $0.87\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and $25,276.6,26-$ and $\left.27-\mathrm{H}_{3}\right), 0.70\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$; $\delta_{\mathrm{C}} 157.6$ (C-5), 136.2 (C-i), 128.8 (C-o), 127.0 (C-m), 125.7 (C-4), 125.3 (C-p), 68.0 (C-3), 56.0, 56.0, 54.4, 42.3 (C-13), 40.6 (C-10), 39.7, 39.4, 36.0, 35.6, 35.4, 33.7, 32.7, 29.1, 28.1, 27.9, 27.3, 24.0, 23.7, 22.7, 22.4, 21.2, 19.8, 18.5, 11.9; m/z (EI) $494.35835\left(\mathrm{M}^{+}, 100 \% . \mathrm{C}_{33} \mathrm{H}_{50} \mathrm{OS}\right.$ requires $\left.M, 494.35824\right)$, $476\left[\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}, 94\right], 461\left[\left(\mathrm{M}-\mathrm{CH}_{3}-\mathrm{H}_{2} \mathrm{O}\right)^{+}, 13\right], 399$ [(M - Ph - $\left.\left.\mathrm{H}_{2} \mathrm{O}\right)^{+}, 6\right], 385$ (19), 367 (65), 105 (29), 95 (34), 57 (25).

Compound 16a showed $\delta_{\mathrm{H}} 7.31-7.06(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $4.05-$ $3.98(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.37-3.23(1 \mathrm{H}, \mathrm{m}, 6$ lines, $6-\alpha \mathrm{H}), 2.27$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{OH}), 1.14\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.90\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 8.6\right.$, $\left.21-\mathrm{H}_{3}\right), 0.87\left(6 \mathrm{H}, \mathrm{d}, J_{25,26}\right.$ and $25,276.6,26-$ and $\left.27-\mathrm{H}_{3}\right), 0.70$ $\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 157.7$ (C-5), 136.7 (C-i), 128.9 (C-o), 127.5 (C-m), 125.3 (C-4), 124.4 (C-p), 67.5 (C-3), 56.0, 55.9, 54.4, 42.3 (C-13), 40.6 (C-10), 39.8, 39.4, 36.0, 35.7, 35.6, 32.2, $31.5,28.5,28.1,27.9,26.9,24.0,23.7,22.7,22.5,21.6$, 18.6, 18.5, 11.9; m/z (EI) 494.35841 ( $\mathrm{M}^{+}, 38 \%$ ), 476.34753 $\left[\left(\mathrm{M}-\mathrm{H}_{32} \mathrm{O}\right)^{+}, 100 . \mathrm{C}_{33} \mathrm{H}_{48} \mathrm{~S}\right.$ requires $\mathrm{m} / \mathrm{z}, 476.347$ 67], 461 $\left[\left(\mathrm{M}-\mathrm{CH}_{3}-\mathrm{H}_{2} \mathrm{O}\right)^{+}, 12\right], 399\left[\left(\mathrm{M}-\mathrm{Ph}-\mathrm{H}_{2} \mathrm{O}\right)^{+}, 6\right], 385(5)$, 367 (30), 109 [(SPh) ${ }^{+}$, 14], 105 (36), 95 (24), 57 (19).

## Reduction of 1 with $\mathrm{LiAlH}_{4}$

To a stirred solution of $\mathrm{LiAlH}_{4}$ in THF ( $1.5 \mathrm{M} ; 5 \mathrm{~cm}^{3}$ ) was added a solution of $\mathbf{1}(150 \mathrm{mg}, 0.305 \mathrm{mmol})$ in THF $\left(3 \mathrm{~cm}^{3}\right)$ in one portion. After 20 min the reaction was quenched with $\mathrm{MeOH}\left(1 \mathrm{~cm}^{3}\right)$ and the mixture was poured into $10 \%$ aq. tartaric acid. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with water and evaporated. The residue was filtered through $\mathrm{SiO}_{2}(15 \mathrm{~g}$; hexane-EtOAc, $40: 1)$ to give a mixture of $\mathbf{1 4}$ and $\mathbf{1 6 a}(137 \mathrm{mg}, 91 \%)$ in the ratio $84: 16$, respectively, by ${ }^{1} \mathrm{H}$ NMR.

## Reduction of 1 with L-Selectride ${ }^{\circledR}$

To a solution of $\mathbf{1}(105 \mathrm{mg}, 0.213 \mathrm{mmol})$ in THF ( $7 \mathrm{~cm}^{3}$ ) was added L-Selectride ${ }^{\circledR}$ ( 1 M in THF; $0.25 \mathrm{~cm}^{3}, 0.25 \mathrm{mmol}$ ) at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with $\mathrm{MeOH}\left(0.5 \mathrm{~cm}^{3}\right)$. The product was isolated as in the above described experiments to give a mixture of $\mathbf{1 4}$ and 16a ( $83 \mathrm{mg} \mathrm{79} \mathrm{\%}$ ) in the ratio $82: 18$, respectively, by ${ }^{1} \mathrm{H}$ NMR.

## Reduction of 1 with $\mathbf{N a B H}_{4}-\mathrm{CeCl}_{3}$ system ${ }^{17}$

To a mixture of $\mathbf{1}(100 \mathrm{mg}, 0.203 \mathrm{mmol}), \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(41 \mathrm{mg}$, 0.110 mmol ), THF ( $2 \mathrm{~cm}^{3}$ ) and $\mathrm{MeOH}\left(3 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NaBH}_{4}(8.5 \mathrm{mg}, 0.224 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After 2 h at $-78^{\circ} \mathrm{C}$, the mixture was allowed to warm to room temp. and then was poured into $10 \%$ aq. tartaric acid. The product was isolated
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and chromatographed on $\mathrm{SiO}_{2}(10 \mathrm{~g}$; hexaneEtOAc, $60: 1$ and $40: 1$ ) to give $\mathbf{1 4}(91 \mathrm{mg}, 91 \%)$. Inspection of the ${ }^{1} \mathrm{H}$ NMR spectrum of this product showed the presence of traces ( $\approx 3 \%$ ) of the isomer 16a.

## 4-(Phenylsulfanyl)cholest-4-en-3a-yl benzoate 16b

To a solution of alcohol $14(86 \mathrm{mg}, 0.174 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(182 \mathrm{mg}$, 0.695 mmol ) and benzoic acid ( $78 \mathrm{mg}, 0.639 \mathrm{mmol}$ ) in THF ( 1.5 $\mathrm{cm}^{3}$ ) was added DEAD ( $0.11 \mathrm{~cm}^{3}, 0.575 \mathrm{mmol}$ ) in THF ( 0.5 $\mathrm{cm}^{3}$ ) at $-78^{\circ} \mathrm{C}$. The mixture set aside at room temp. for 2 h and the solvent was evaporated. The residue was chromatographed on $\mathrm{SiO}_{2}(5 \mathrm{~g}$; hexane-EtOAc, 100:1, 50:1 and 20:1) to give the title benzoate 16b ( $77 \mathrm{mg}, 76 \%$ ), $\delta_{\mathrm{H}} 7.89-7.00(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $5.51(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}), 3.51-3.36(1 \mathrm{H}, \mathrm{m}, 6$ lines, $6-\alpha \mathrm{H}), 1.19$ $\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J_{20,21} 6.4,21-\mathrm{H}_{3}\right), 0.89(6 \mathrm{H}, \mathrm{d}$, $J_{25,26}$ and $25,276.6,26-$ and $\left.27-\mathrm{H}_{3}\right), 0.73\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right) ; \delta_{\mathrm{C}} 165.9$ ( $\mathrm{C}=\mathrm{O}$ ), $160.8(\mathrm{C}-5), 137.0(\mathrm{C}-i, \mathrm{SPh}), 132.4(\mathrm{C}-p, \mathrm{Bz}), 130.6$ $(\mathrm{C}-i, \mathrm{Bz}), 129.5(\mathrm{C}-o, \mathrm{Bz}), 128.6(\mathrm{C}-o, \mathrm{SPh}), 128.0(\mathrm{C}-m, \mathrm{Bz})$, 127.6 (C-m, SPh), 125.1 (C-p, SPh), 120.7 (C-4), 72.1 (C-3), 56.1, 55.9, 54.7, 42.3 (C-13), 40.4 (C-10), 39.7, 39.4, 36.0, 35.6, $35.5,32.2,32.1,28.5,28.1,27.9,25.7,24.0,23.7,22.7,22.5$, 21.6, 18.5, 18.5, 11.9; m/z (EI) $598.38414\left(\mathrm{M}^{+}, 11 \% . \mathrm{C}_{40} \mathrm{H}_{54} \mathrm{O}_{2} \mathrm{~S}\right.$ requires $M, 598.38445), 476.34780\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}, 100\right.$. $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{~S}$ requires $\left.\mathrm{m} / \mathrm{z}, 476.34767\right), 461\left[\left(\mathrm{M}-\mathrm{CH}_{3}-\mathrm{BzOH}\right)^{+}\right.$, 21], 367 (24), $122\left(\mathrm{BzOH}^{+}, 18\right), 105\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}, 100\right)$.

## 4-(Phenylsulfanyl)cholest-4-en-3a-ol 16a from 16b

To a solution of benzoate $\mathbf{1 6 b}(77 \mathrm{mg}, 0.129 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \mathrm{~cm}^{3}\right)$ was added DIBAH ( 0.7 M in hexane; $0.4 \mathrm{~cm}^{3}, 0.280$ mmol ) at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1 h before being allowed to warm to room temp., treated with $\mathrm{MeOH}\left(0.5 \mathrm{~cm}^{3}\right)$, and poured into $10 \%$ aq. tartaric acid. The product was isolated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and chromatographed on $\mathrm{SiO}_{2}(1.5 \mathrm{~g}$; hexaneEtOAc, $100: 1$ and $50: 1$ ) to give $\mathbf{1 6 a}(59 \mathrm{mg}, 92 \%)$.

## Reduction of 15a with $\mathrm{LiAlH}_{4}$

To a solution of hydroxy sulfone $\mathbf{1 5 a}(61 \mathrm{mg}, 0.116 \mathrm{mmol})$ in THF ( $4 \mathrm{~cm}^{3}$ ) was added $\mathrm{LiAlH}_{4}\left(0.25 \mathrm{M}\right.$ in THF; $0.6 \mathrm{~cm}^{3}, 0.150$ $\mathrm{mmol})$. The mixture was heated under reflux for 20 min . After cooling, the reaction mixture was quenched with $\mathrm{MeOH}(0.5$ $\mathrm{cm}^{3}$ ) and poured into $10 \%$ aq. tartaric acid. The product was isolated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and chromatographed on $\mathrm{SiO}_{2}(2 \mathrm{~g}$; hexane-EtOAc $50: 1,10: 1$ and $5: 1$ ) to give sulfone 7 a ( 49 mg , $82 \%$ ).

## Catalytic hydrogenation of 2

A solution of $2(60 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{EtOH}\left(4.5 \mathrm{~cm}^{3}\right)$, containing $10 \%$ palladium on carbon ( 10 mg ), was stirred under hydrogen at the reflux temperature for 5 h . The mixture was cooled and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solid was filtered off and the solvent was evaporated. A mixture of compounds $\mathbf{1 1}$ and $\mathbf{1 2}$ in the ratio 6.5:1 ( ${ }^{1} \mathrm{H}$ NMR) was obtained.

In an analogous reaction, a solution of $\mathbf{2}(60 \mathrm{mg}, 0.11 \mathrm{mmol})$ in EtOH ( $4.5 \mathrm{~cm}^{3}$ ), containing $10 \%$ palladium on carbon ( 10 mg ), was treated with $\mathrm{CF}_{3} \mathrm{COOH}(0.5 \mathrm{mmol})$ and the mixture was stirred at room temp. for 5 days. A mixture of $\mathbf{1 1}$ and $\mathbf{1 2}$ in the ratio 5.5:1 ( ${ }^{1} \mathrm{H}$ NMR) was obtained.

## References

1 J. Seyden-Penne, Reduction by the Alumino- and Borohydrides in Organic Synthesis, Wiley-VCH, New York, 1997.
2 A. P. Davis, in Formation of $C-C$ Bonds by the Reduction of Carbonyl Groups with Metal Hydrides, ed. G. Helmchen, R. W. Hoffmann, J. Mulzer and E. Schaumann, Thieme, Stuttgart, 1996.

3 M. Julia, M. Launay, J.-F. Stacino and J.-N. Verpeaux, Tetrahedron Lett., 1982, 23, 2465.
4 J. S. Grossert, in Reduction of Sulphoxides and Sulphones, ed. S. Patai, Z. Rappoport and C. Stirling, Wiley, Chichester, 1988.

5 P. S. Jones, S. V. Ley, N. S. Simpkins and A. J. White, Tetrahedron, 1986, 42, 6519.
6 M. C. Clasby and D. Craig, Synth. Commun., 1994, 24, 481.
7 K. Michalak, W. Stepanenko and J. Wicha, Tetrahedron Lett., 1996, 37, 7657.
8 A. Przezdziecka, W. Stepanenko and J. Wicha, Tetrahedron: Asymmetry, 1999, 10, 1589.
9 H. B. Henbest and W. R. Jackson, J. Chem. Soc. C, 1967, 2459.
10 A. G. Schultz, W. Y. Fu, R. D. Lucci, B. G. Kurr, K. M. Lo and M. Boxer, J. Am. Chem. Soc., 1978, 100, 2140.

11 A. Furst and R. Scotoni, Helv. Chim. Acta, 1953, 36, 1332.
12 A. Kasal, Collect. Czech. Chem. Commun., 1976, 41, 140.
13 P. J. Kocienski, B. Lythgoe and S. Ruston, J. Chem. Soc., Perkin Trans. 1, 1979, 1290.

14 N. Jones and M. J. Green, J. Chem. Soc. C, 1967, 532.
15 T. Tsuda, T. Hayashi, H. Satomi, T. Kawamoto and T. Saegusa, J. Org. Chem., 1986, 51, 537.

16 A. R. Daniewski and J. Kiegel, Synth. Commun., 1988, 18, 115.
17 J.-L. Luche, L. Rodrigez-Hahn and P. Crabbe, J. Chem. Soc., Chem. Соттип., 1978, 601.
18 After quenching of the reaction with MeOH only one epimer of sulfone was obtained (with equatorially oriented phenylsulfonyl group). The quench with excess of saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ leads to a mixture of axial and equatorial sulfones ( $\approx 1: 9$, respectively).
19 D. Zeigan, R. Radgelia and G. Engelhardt, J. Prakt. Chem., 1983, 325, 651.
20 T. Tsuda, T. Kawamoto, Y. Kumamoto and T. Saegusa, Synth. Соттии., 1986, 16, 639.

